78 research outputs found

    Context-adaptive learning designs by using semantic web services

    Get PDF
    IMS Learning Design (IMS-LD) is a promising technology aimed at supporting learning processes. IMS-LD packages contain the learning process metadata as well as the learning resources. However, the allocation of resources - whether data or services - within the learning design is done manually at design-time on the basis of the subjective appraisals of a learning designer. Since the actual learning context is known at runtime only, IMS-LD applications cannot adapt to a specific context or learner. Therefore, the reusability is limited and high development costs have to be taken into account to support a variety of contexts. To overcome these issues, we propose a highly dynamic approach based on Semantic Web Services (SWS) technology. Our aim is moving from the current data- and metadata-based to a context-adaptive service-orientated paradigm We introduce semantic descriptions of a learning process in terms of user objectives (learning goals) to abstract from any specific metadata standards and used learning resources. At runtime, learning goals are accomplished by automatically selecting and invoking the services that fit the actual user needs and process contexts. As a result, we obtain a dynamic adaptation to different contexts at runtime. Semantic mappings from our standard-independent process models will enable the automatic development of versatile, reusable IMS-LD applications as well as the reusability across multiple metadata standards. To illustrate our approach, we describe a prototype application based on our principles

    A formal model for classifying trusted Semantic Web Services

    Get PDF
    Semantic Web Services (SWS) aim to alleviate Web service limitations, by combining Web service technologies with the potential of Semantic Web. Several open issues have to be tackled yet, in order to enable a safe and efficient Web services selection. One of them is represented by trust. In this paper, we introduce a trust definition and formalize a model for managing trust in SWS. The model approaches the selection of trusted Web services as a classification problem, and it is realized by an ontology, which extends WSMO. A prototype is deployed, in order to give a proof of concept of our approach

    Supporting interoperability and context-awareness in e-learning through situation-driven learning processes

    Get PDF
    Current E-Learning technologies primarily follow a data and metadata-centric paradigm by providing the learner with composite content containing the learning resources and the learning process description, usually based on specific metadata standards such as ADL SCORM or IMS Learning Design. Due to the design-time binding of learning resources, the actual learning context cannot be considered appropriately at runtime, what limits the reusability and interoperability of learning resources. This paper proposes Situation-driven Learning Processes (SDLP) which describe learning processes semantically from two perspectives: the user perspective considers a learning process as a course of learning goals which lead from an initial situation to a desired situation, whereas the system perspective utilizes Semantic Web Services (SWS) technology to semantically describe necessary resources for each learning goal within a specific learning situation. Consequently, a learning process is composed dynamically and accomplished in terms of SWS goal achievements by automatically allocating learning resources at runtime. Moreover, metadata standard independent SDLP are mapped to established standards such as ADL SCORM and IMS LD. As a result, dynamic adaptation to specific learning contexts as well as interoperability across different metadata standards and application environments is achieved. To prove the feasibility, a prototypical application is described finally

    Fuzzy context adaptation through conceptual situation spaces

    Get PDF
    Context-adaptive information systems (IS) are highly desired across several application domains and usually rely on matching a particular real-world situation to a finite set of predefined situation parameters. To represent context parameters, semantic and non-semantic representation standards are widely used. However, describing the complex and diverse notion of specific situations is costly and may never reach semantic completeness. Whereas not any situation parameter completely equals another, the number of (predefined) representations of situation parameters is finite. Moreover, following symbolic representation approaches leads to ambiguity issues and does not entail semantic meaningfulness. Consequently, the challenge is to enable fuzzy matchmaking methodologies to match real-world situation characteristics to a finite set of predefined situation descriptions. In this paper, we propose conceptual situation spaces (CSS) which enable the description of situation characteristics as members in geometrical vector spaces following the idea of conceptual spaces. Consequently, fuzzy matchmaking is supported by calculating the semantic similarity between the current situation and prototypical situation descriptions in terms of their Euclidean distance within a CSS. Aligning CSS to existing symbolic representation standards, enables the automatic matchmaking between real-world situation characteristics and symbolic parameter representations. To prove the feasibility, we apply our approach to the domain of e-learning
    • …
    corecore